Меню Рубрики

Перевод текста the electromagnetic motor

There are materials that really occupy a place between the conductors of the electric current and the non-conductors. They are called semiconductors. These materials conduct electricity less readily than conductors but much better than insulators.

Semiconductors include almost all minerals, many chemical elements, a great variety of chemical compounds, alloys of metals, and a number of organic compounds. Like metals, they conduct electricity but they do it less effectively. In metals all electrons are free and in insulators they are fixed. In semiconductors electrons are fixed, too, but the connection is so weak that the heat motion of the atoms of a body easily pulls them away and sets them free.

Minerals and crystals appear to possess some unexpected properties. It is well known that their conductivity increases with heating and falls with cooling. As a semiconductor is heated, free electrons in it increase in number, hence, its conductivity increases as well.

Heat is by no means the only phenomenon influencing semiconductors. They are sensitive to light, too. Take germanium as an example. Its electrical properties may greatly change when it is exposed to light. With the help of a ray of light directed at a semiconductor, we can start or stop various machines, effect remote control, and perform lots of other useful things. Just as they are influenced by falling light, semiconductors are also influenced by all radiation. Generally speaking, they are so sensitive that a heated object can be detected by its radiation.

Such dependence of conductivity on heat and light has opened up great possibilities for various uses of semiconductors. The semiconductor devices are applied for transmission of signals, for automatic control of a variety of processes, for switching on engines, for the reproduction of sound, protection of high-voltage transmission lines, speeding up of some chemical reactions, and so on. On the one hand they may be used to transform light and heat energy directly into electric energy without any complex mechanism with moving. parts, and on the other hand, they are capable of generating heat or cold from electricity.

Russian engineers and scientists turned their attention to semiconductors many years ago. They saw in them a means of solving an old engineering problem, namely, that of direct conversion of heat into electricity without boilers or machines. Semiconductor thermocouples created in Russia convert heat directly into electricity just as a complex system consisting of a steam boiler, a steam engine and a generator does it.

II. Give the English equivalents for the words and word combinations below:

1) полупроводник; 2) химическое соединение; 3) сплав; 4) освобождать; 5) свойство; 6) увеличивать (ся); 7) охлаждение; 8) чувствительный к; 9) выставлять; 10) луч; 11) направлять на; 12) дистанционное управление; 13) находить, обнаруживать; 14) защита; 15) ускорение; 16) решить инженерную проблему; 17) термоэлемент.

III. Guess the meaning of the following international words:

element, organic, mineral, crystal, phenomenon, automatic, control, process, reproduction, conversion, boiler.

IV. Join the beginnings and ends:

Semiconductors are sensitive to…

… conductors of the electric current and non-conductors.

Semiconductors convert heat into …

… dependence of conductivity on heat and light.

Semiconductors occupy a place between …

Semiconductors conduct electricity

…into electricity without machines.

Great possibilities for various uses of semiconductors are connected with …

… less effectively than metals.

As a semiconductor is heated …

… its conductivity increases as well.

V. Insert words and expressions:

1) Semiconductors include a great variety of (химические соединения), (сплавы металлов).

2) Minerals and crystals appear to possess some unexpected (свойства). Their conductivity increases with (нагревание) and falls with (охлаждение).

3) With the help of a ray of light directed at a semiconductor, we can effect (дистанционное управление).

4) The semiconductor devices are applied for (автоматический контроль) of a variety of processes, for the (воспроизведение) of sound, (ускорение) of some chemical reactions.

5) (Термоэлементы) created in Russia convert heat directly into electricity.

VI. Answer the questions:

1) What do semiconductors include? 2) How does the atomic structure of semiconductors influence their properties? 3) What phenomena influence semiconductors? 4) What are the semiconductor devices applied for? 5) How do semoconductors help in solving engineering problems?

VII. Talk on the properties of semiconductors and their practical application

ELECTRICITY AND MAGNETISM

Electromotive Force

When free electrons are dislodged from atoms, electrical energy is released. Chemical reaction, friction heat and electromagnetic induction will cause electrons to move from one atom to another. Whenever energy in any form is released, a force called electromotive (e. m. f.) is developed.

If the force exerts its effort always in one direction, it is called direct; and if the force changes its direction of exertion periodically, it is called alternating. The chemical reaction in a dry cell, heat and friction are sources of a unidirectional force. Electromagnetic induction produces an alternating force. The direction of force depends on the direction in which the field is cut. Whenever an e. m. f. is developed, there is also a field of energy called an electrostatic field, which can be detected by an electroscope and measured by an electrometer.

An electromotive force is induced in the conductor when there is a change in the magnetic field surrounding a conductor. This induced electromotive force may be produced in several ways as follows:

a. A conductor may move in a stationary magnetic field of constant strength.

b. A stationary conductor may be exposed ‘to a moving magnetic field of constant strength.

c. The strength of the field surrounding the conductor may change without any motion of conductor or magnetic circuit.

The electromotive force induced by motion of a conductor or a magnetic flux is the same when the conductor rotates and the flux is stationary or the flux rotates and the conductor is stationary. If both, conductor and flux, rotate in the same direction at the same speed, no electromotive force will be produced, if they rotate at the same speed but in opposite directions, the electromotive force induced would be twice as that which would be induced, if one of them was stationary. An electromotive force is not induced when a conductor is moved parallel to the lines of force, but only when it moves at an angle with these lines.

Any motion across the direction of the lines, however, will produce an electromotive force in the conductor. For this reason, the conductor is said to «cut» the lines of force. The actual electromotive force induced in the conductor depends upon the nature at which the flux is cut.

ELECTROMOTIVE FORCE AND RESISTANCE

The electromotive force is the very force that moves the electrons from one point in an electric circuit towards another. In case this e. m. f. is direct, the current is direct. On the other hand, were the electromotive force alternating, the current would be alternating, too. The e. m. f. is measurable and it is the volt that is the unit used for measuring it. A current is unable to flow in a circuit consisting of metallic wires alone. A source of an e. m. f. should be provided as well. The source under consideration may be a cell or a battery, a generator, a thermocouple or a photocell, etc.

In addition to the electromotive force and the potential difference reference should be made to another important factor that greatly influences electrical flow, namely, resistance. All substances offer a certain amount of opposition, that is to say resistance, to the passage of current. This resistance may be high or low depending on the type of circuit and the material employed. Glass and rubber offer a very high resistance and, hence, they are considered as good insulators. All substances do allow the passage of some current provided the potential difference is high enough.

Certain factors can greatly influence the resistance of an electric circuit. They are the size of the wire, its length, and type. In short, the thinner or longer the wire, the greater is the resistance offered.

II. Give the English equivalents for the words below. Find in the text the sentences with these words and translate them

1) трение; 2) электродвижущая сила; 3) элемент; 4) параллельное соединение; 5) сопротивление; 6) электромагнитная индукция; 7) переменный ток; 8) постоянное напряжение; 9) фотоэлемент.

III. Guess the meaning of the following international words and translate them:

reaction, electrostatic, electrometer, electroscope, volt, metallic.

IV. Say whether these sentences are true or false:

1. Alternating force always exerts its effort in one direction.

2. Alternating force is produced by electromagnetic induction.

3. The electromotive force is induced by motion of a conductor.

4. Resistance is an important factor that greatly influences electrical flow.

5. The type of the material employed doesn’t influence the resistance.

V. Answer the questions:

1) What factors cause the motion of electrons from one atom to another? 2) When is the electromotive force developed? 3) When does an electrostatic field appear? 4) How is the electromotive force induced? 5) What unit is used for measuring the electromotive force? 6) What are the sources of electromotive force? 7) What is called “resistance”? 8) How do the types of circuit and material influence the resistance? 9) Name the factors that influence the resistance of an electric circuit.

Dynamos

The term «dynamo» is applied to machines which convert either mechanical energy into electrical energy or electrical energy into mechanical energy by utilizing the principle of electromagnetic induction. A dynamo is called a generator when mechanical energy supplied in the form of rotation is converted into electrical energy. When the energy conversion takes place in the reverse order the dynamo is called a motor. Thus a dynamo is a reversible machine capable of operation as a generator or motor as desired.

A generator does not create electricity, but generates or produces an induced electromotive force, which causes a current to flow through a properly insulated system of electrical conductors external to it. The amount of electricity obtainable from such a generator is dependent upon the mechanical energy supplied. In the circuit external to a generator the e. m. f. causes the electricity to flow from a higher or positive potential to a lower or negative potential. In the internal circuit of a generator the e. m. f. causes the current to flow from a lower potential to a higher potential. The action of a generator is based upon the principles of electromagnetic induction.

The dynamo consists essentially of two parts: a magnetic field, produced by electromagnets, and a number of loops or coils of wire wound upon an iron core, forming the armature. These parts are arranged so that the number of the magnetic lines of force of the field threading through the armature, coils will be constantly varied, thereby producing a steady e. m. f. in the generator or a constant torque in the motor.

II. Fill in the gaps with the words given below:

to convert, generator, reversible, obtainable, induction, loops

1. The term “dynamo” is applied to machines which. either mechanical energy into electrical or on the contrary electrical energy into mechanical energy.

2. A dynamo is a. machine capable of operation as a generator or motor as desired.

3. The amount of electricity. from such a generator is dependent upon the mechanical energy supplied.

5. The dynamo consists of two parts: a magnetic field, produced by electromagnets, and a number of. or coils of wire.

III. Find the Russian equivalents for the following English words and word combinations:

1) to be applied to smth.; 2) to convert smth. into smth.; 3) rotation; 4) to utilize; 5) a properly insulated system; 6) internal (external) circuit; 7) capable of operation; 8) positive (negative) potential; 9) reverse order; 10) energy conversion.

IV. Answer the questions

1. What term can be applied to machines converting mechanical energy into electrical and vice versa?

2. What kind of machine is a dynamo?

3. What is the function of a generator?

4. What is the action of a generator based upon?

5. What parts does the dynamo consist of?

V. Talk on the dynamo action

GENERATORS

The powerful, highly efficient generators and alternators that are in use today operate on the same principle as the dynamo invented by the great English scientist Faraday in 1831.

Dynamo-electric machines are used to supply light, heat and power on a large scale. These are the machines that produce more than 99.99 per cent of all the world’s electric power.

There are two types of dynamos – the generator and the alternator. The former supplies d. c. which is similar to the current from a battery and the latter provides a. c. To generate electricity both of them must be continuously provided with energy from some outside source of mechanical energy such as steam engines, steam turbines or water turbines.

A generator is an electric machine, which converts mechanical energy into electric energy. There are direct-current (d. c.) generators and alternating-current (a. c.) generators. Their construction is much alike. A d. c. generator consists of stationary and rotating elements. The stationary elements are: the yoke or the frame and the field structure. The yoke forms the closed circuit for the magnetic flux. The function of the magnetic structure is to produce the magnetic field.

The rotating elements are: true armature and the commutator. They are on the same shaft. The armature consists of the core and the winding. The winding is connected to the commutator. With the help of the brushes on the commutator that conduct the electric current to the line the winding is connected to the external circuit. The stationary element of an a. c. generator is called a stator. The rotating element is called a rotor.

The essential difference between a d. c. generator and a. c. generator is that the former has a commutator by means of which the generated e. m. f. is made continuous, i. e. the commutator mechanically rectifies the alternating e. m. f. so that it is always of the same polarity.

D. c. generators are used for electrolytic processes such as electroplating. Large d. c. generators are employed in such manufacturing processes as steel making. The d. c. generator of small capacities is used for various special purposes such as arc welding, automobile generators, train lighting systems, etc. It also finds rather extensive use in connection with communication systems.

II. Give the Russian equivalents for the following English words and word combinations:

1) generator; 2) alternator; 3) steam turbine; 4) water turbine; 5) armature; 6) rotor; 7) stationary; 8) commutator; 9) stator; 10) yoke; 11) brushes; 12) core; 13) frame; 14) winding.

III. Fill in the blanks

IV. Work out the plan of the text

V. Speak on the following points:

1. The construction of a generator.

2. The direct current generators and their industrial application.

Main Structural Elements of a D. C. Machine

A direct-current machine consists of two main parts, a stationary part, usually called the stator, designed mainly for producing a magnetic flux, and a rotating part, called the armature or the rotor. The stationary and rotating parts should be separated from each other by an air-gap. The stationary part of a d. c. machine consists of main poles, designed to create the main magnetic flux; commutating poles interposed between the main poles; and a frame. It should be noted here that sparkless operation of the machine would be impossible without the commutating poles. Thus, they should ensure sparkless operation of the brushes at the commutator.

The main pole consists of a laminated core the end of which facing the armature carries a pole shoe and a field coil through which direct current passes. The armature is a cylindrical body rotating in the space between the poles and comprising a slotted armature core, a winding inserted in the armature slots, a commutator, and a brush gear.

The frame is the stationary part of the machine to which are fixed the main and commutating poles and by means of which the machine is bolted to its bedplate. The ringshaped portion which serves as the path for the main and commutating pole fluxes is called the yoke. End-shields or frame-heads which carry the bearings are also attached to the frame.

Of these main structural elements of the machine the yoke, the pole cores, the armature core and the air-gap between the armature core and the pole core are known to form the magnetic circuit while the pole coils, the armature windings, the commutator and brushes should form the electric circuit of the machine.

II. Translate the following phrases, using the given variants of translation:

to consist – состоять : to consist of a stationary part and a rotating part;

separated – отдельный изолированный: the stationary and rotating parts should be separated from each other by an air gap;

to serve – служить в качестве чего-либо: the ringshaped portion or yoke serves as a path for the main and commutating pole fluxes.

III. Join the beginnings and the ends

The stationary parts of a d. c.

a laminated core the end of which

carries a pole shoe and a field coil.

The two main parts of a direct

current machine are.

main poles, commutating poles and

The main pole consists of.

A stationary part or stator and a rotating part, called the armature or the rotor.

IV. Arrange synonyms in pairs and memorize them:

a) to consist of; to be separated from; to create; to be interposed between; to pass; to rotate;

в) to be divided with; to produce; to introduce into; to permeate; to roll; to revolve; to comprise.

V. Write out the names of the machine parts and describe their operational characteristics

The Alternator

The alternator is an electric machine for generating an alternating current by a relative motion of conductors and a magnetic field. The machine usually has a rotating field and a stationary armature. In a synchronous alternator the magnetic field is excited with a direct current. The direction of an induced e. m.f. is reversed each time when a conductor passes from a pole of one polarity to a pole at another polarity. Most machines of this type are used for lighting and power, but there are alternators with a revoking armature and a stationary field. They are used in small sizes mostly for special purposes.

Any electrical machine is reversible. When a machine is driven by a source of mechanical power, it works as a generator and delivers electrical power. If it is connected to a source of electrical power, it produces mechanical energy, and operates as a motor. The alternator may also be operated as a motor.

The a-c. generator, or alternator, does not differ in principle from the d. c. generator. The alternator consists of a field structure and an armature. The field structure is magnetized by a field winding carrying a. direct current. An electromotive force is generated in tine winding of the armature. In alternators the field is usually the rotating element and the armature is stationary. This construction has a number of advantages. Only two rings are needed with a rotating field. These rings carry only a relatively light field current, at a voltage generally of 125, and seldom exceeding 250. The insulation of such rings is not difficult. A stationary armature requires no slip rings. The leads from the armature can be continuously insulated from the armature winding to the switchboard, leaving no bare conductor. The alternator with a rotating field may be further divided into the vertical and the horizontal types.

The vertical type is usually applied for large water-wheel generators where it is desirable to mount the water turbine below the generator. The more common horizontal type is used with diesel and steam engine drive. A low-speed alternator of this type is suitable for a diesel engine drive, a high speed alternator is suitable for a steam turbine drive.

II. Form nouns, denoting devices with the help of the suffix – or. Translate them

To alternate, to commute, to conduct, to generate

III. Read the text and write out the key words, characterizing the alternator

IV. Translate the following word combinations paying attention to the Participle 2

The leads from the armature can be continuously insulated from…. the vertical type of alternator applied for large water-wheel generator; alternators with a revoking armature and a stationary field used in small sizes mostly for special purposes; a machine driven by a source of mechanical power; the direction of an induced e. m. f. …

V. State 5 questions to the text

VI. Points for discussion:

1. The structure of the alternator;

2. The application of the alternator.

The Induction Motor

An induction motor like any other motor consists of a stationary part, the stator, and a rotating part, the rotor. The rotor of an induction motor is not connected electrically to the source of power supply. The currents which circulate in the rotor conductors are the result of voltage induced in the rotor in the magnetic field set up by the stator. The rotor is fitted with a set of conductors in which currants flow. As these conductors lie in the magnetic field produced by the stator, a force is exerted on the conductors and the rotor begins to revolve. The operation of the motor depends upon the production of a rotating magnetic field. The speed at which the field of an induction motor turns is called the synchronous speed of the field or of the motor.

The induction motor is the simplest of the various types of electric motors and it has found more extensive application in industry than any other type. It is made in two forms – the squirrel cage and the wound rotor, the difference being in the construction of the rotor.

The stator of the induction motor has practically the same slot and winding arrangement as the alternator and has the coils arranged to form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate. The rotor construction, however, is entirely different.

The squirrel-cage rotor is a simpler form and has been used in many machines.

Instead of coils the winding consists of heavy copper bars.

The wound-rotor type has a winding made up of well-insulated coils, mounted in groups whose end connections are brought out to fill in rings. The purpose of this winding is to provide for variation in the amount of resistance included in the rotor circuit.

Provision for ventilation is made by leaving passageways through the core and frame, through which air is forced by fan vanes mounted on the rotor. In main cases the motors now built in as an integral part of the machine it is to drive.

There being no electrical connection between the rotor circuits of the induction motor and the stator circuits, or supply line, the currents which flow in the rotor bars or windings correspond to the induced voltages, the action being similar to that of a transformer with a movable secondary. With but a single-phase winding on the stator, however, the torques produced in the two halves of the rotor would be in apposition, and the motor would not start. With more than one set of windings two for a two-phase motor, three for a three-phase motor a resultant field is produced which has the effect of cutting across the rotor conductors and induces voltages in them. This field is considered to be revolving at uniform speed.

The term “revolving field” should not be taken to mean actual revolution of flux lines. The magnetic field from the coils of each phase varies in strength with changes in current value but does not move around the stator. The revolutions are those of the resultant of the three, or two, phases, as the case may be. A motor with a single-phase winding is not self-starting but must be provided with an auxiliary device of some kind to enable the motor to develop a starting torque. The effect of the revolving field is the same as would result from actual revolution of a stator having direct-current poles. As voltages have been induced in the bars or windings of the rotor, currants start flowing as a result of these voltages, and a torque is produced which brings the motor up to speed.

II. Find in the text the English equivalents for the word combinations given below:

1) асинхронный двигатель; 2) неподвижная часть; 3) вращающаяся часть; 4) проводник; 5) одновременная скорость; 6) широкое применение; 7) паз; 8) механизм обмотки; 9) трансформатор; 10) вращающий момент.

III. Complete the following sentences according to the contents of the text

1. The Induction Motor is …….. of electric motors and is more extensively applied in industry than any other type.

2. The purpose of this winding is …….. for variation in the amount of resistance included in the rotor circuit.

3. The effect of …. is the same as would result from actual revolution of a stator having direct-current poles.

IV. Answer the following questions:

1. What parts does the induction motor consist of?

2. What are the names of its rotating and stationary parts?

3. What does the motor operation depend on?

4. How can the difference between stator and rotor construction be explained?

5. What does the term “revolving field” mean?

V. Translate the sentences from the text paying attention to the Nominative Absolute Participle Constructions:

1. The induction motor is made in two forms – the squirrel cage and the wound rotor, the difference being in the construction of the rotor.

2. The stator of the induction motor has practically the same slot and winding arrangement as the alternator and has the coils arranged to form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate.

3. There being no electrical connection between the rotor circuits of the induction motor and the stator circuits, or supply line, the currents which flow in the rotor bars or windings correspond to the induced voltages, the action being similar to that of a transformer with a movable secondary.

VI. Discuss the following points:

1) The construction of an induction motor;

2) Induction motor operation principle.

Types of Induction Motors

SINGLE – PHASE MOTOR

The single-phase induction motor differs from poly-phase type principally in the character of its magnetic field, as an ordinary single-phase winding will not produce a rotating field, but a field that is oscillating, and the induced currents and poles produced in the rotor by this field will tend to produce equal torque in opposite directions, therefore, the rotor cannot start to revolve. However, if the rotor can in some manner be made to rotate at a speed corresponding to the frequency of the current in the stator windings then the reaction of the stator and rotor flux is such as to produce a torque that will keep the rotor revolving.

In practice the starting of single-phase induction motors is accomplished by three general methods applicable to small-sized motors only.

First: the split-phase method, in which an auxiliary stator winding is provided for starting purposes only, this winding being displaced from the main stator winding by 90 electrical degrees. It has a higher inductance than the main stator winding, thus causing the currant in it to lag far enough behind the current in the main winding to produce a shifting or rotating field during the starting period, which exerts a starting torque on the rotor sufficient to cause rotation.

When nearly normal speed has been reached the auxiliary winding is out of circuit by a switch and clutch in the motor, which operates automatically by centrifugal force, and the rotor continues to run as a single-phase motor. The starting torque of such motions being limited, they are frequently constructed with the rotor arranged to revolve freely on the shaft at starting until nearly normal speed is reached, at which time the load is pitched up by the automatic action of a centrifugal clutch.

Second: an auxiliary winding may be connected to the single-phase line through an external inductance and a switch (for disconnecting the auxiliary winding from the circuit after the motor has reached normal speed), the introduction of the inductance in the auxiliary winding splitting the phase as before.

THREE – PHASE INDUCTION MOTOR

The three-phase induction motor is the most commonly used type. It has been widely used in recent years. Normally an induction motor consists of a cylindrical core (the stator) which carries the primary coils in slots on its inner periphery. The primary coils are arranged for a three-phase supply and serve to produce a revolving magnetic field. The stator encircles a cylindrical rotor carrying the secondary winding in slots on its outer periphery.

The rotor winding may be one of two types: squirrel-cage and slip-ring for wound-rotor). In a squirrel-cage machine the rotor winding forms a complete closed circuit in itself. The rotor winding of a slip-ring machine is completed when the slip rings are connected either directly together or through some resistance external to the machine. The rotor shaft is coupled to the shaft of the driven mechanism.

The rotor is stationary at some instant of time. The revolving magnetic field of the stator winding cuts across the stationary rotor winding at synchronous speed and induces an e. m. f. in it. The e. m. f. will give rise to a current which sets up a magnetic field. The rotor starts rotating.

It is the interaction between the rotor current and the revolving magnetic field that has created torque and has caused the rotor to rotate in the same direction as the revolving magnetic field. Tine speed of the rotor is 98–95 per cent of the synchronous speed of the revolving magnetic field of the stator. Hence another name for this type of motor is the asynchronous motor. As a matter of fact, the speed of the rotor cannot be equal to synchronous speed. If it were equal to the latter, the revolving magnetic field would not be able to cut the secondary conductors and there would not be any current induced in the secondary winding and no interaction between the revolving field and the rotor current, and the motor would not run.